Class 12 Maths — Crash Revision 2026 | CBSE 28 Feb Master Plan | Mega Formula Sheet

📅 Wednesday, 18 February 2026 📖 पढ़ रहे हैं...

📐 Class 12 Maths — Crash Revision 2026
CBSE 28 Feb | Mega Formula Sheet

Calculus + Algebra + Vectors + 3D + Probability — All Formulas & Tricks

⏰ CBSE: 10 दिन बाकी — 28 Feb!
📢 CBSE Class 12 Mathematics (041): 28 फरवरी 2026 (शनिवार) — 10 दिन!
🎯 Maths = Practice + Formulas + Speed! रोज़ 10 problems solve करो = exam ready!

📊 Unit-wise Weightage — 80 marks

35
📈 Calculus
Ch.5-9
⭐ HIGHEST!
14
📐 Vectors + 3D
Ch.10-11
10
🔢 Algebra
Ch.3-4
Matrices+Det
8
🎲 Probability
Ch.13
8
🔗 Relations
Ch.1-2
5
📊 Linear Prog
Ch.12
EASIEST!
🎯 Strategy: Calculus (35) + Vectors/3D (14) = 49/80 marks = ये 2 master करो!

🔗 Unit 1: Relations & Functions — 8 marks

Ch.1: Relations & Functions
📐 Key Concepts:
Types of Relations: Reflexive (aRa ∀a), Symmetric (aRb ⇒ bRa), Transitive (aRb ∧ bRc ⇒ aRc)
Equivalence Relation = Reflexive + Symmetric + Transitive
Types of Functions: One-one (Injective): f(a)=f(b) ⇒ a=b | Onto (Surjective): Range = Codomain | Bijective = One-one + Onto
Composition: (fog)(x) = f(g(x)) — apply g first, then f
Inverse: f⁻¹ exists only if f is bijective
⚡ Trick: Relation on set A={1,2,3} — check: (1,1),(2,2),(3,3) ∈ R? = Reflexive✅ | aRb ⇒ bRa? = Symmetric✅ | aRb,bRc ⇒ aRc? = Transitive✅
Ch.2: Inverse Trigonometric Functions
📐 Domain & Range Table:
• sin⁻¹x: Domain [-1,1], Range [-π/2, π/2]
• cos⁻¹x: Domain [-1,1], Range [0, π]
• tan⁻¹x: Domain ℝ, Range (-π/2, π/2)
• cot⁻¹x: Domain ℝ, Range (0, π)
• sec⁻¹x: Domain (-∞,-1]∪[1,∞), Range [0,π]-{π/2}
• cosec⁻¹x: Domain (-∞,-1]∪[1,∞), Range [-π/2,π/2]-{0}
📐 Key Properties:
• sin⁻¹x + cos⁻¹x = π/2
• tan⁻¹x + cot⁻¹x = π/2
• sec⁻¹x + cosec⁻¹x = π/2
• tan⁻¹x + tan⁻¹y = tan⁻¹((x+y)/(1-xy)), xy < 1
• 2tan⁻¹x = sin⁻¹(2x/(1+x²)) [|x|≤1] = cos⁻¹((1-x²)/(1+x²)) [x≥0] = tan⁻¹(2x/(1-x²)) [|x|<1]
⚠️ Conditions ज़रूर लिखो — CBSE marks काटता है!
• sin⁻¹(-x) = -sin⁻¹x | cos⁻¹(-x) = π - cos⁻¹x | tan⁻¹(-x) = -tan⁻¹x

🔢 Unit 2: Algebra — 10 marks

Ch.3: Matrices
📐 Key Formulas:
Types: Row (1×n), Column (m×1), Square (n×n), Diagonal, Scalar, Identity (I), Zero, Symmetric (A=Aᵀ), Skew-Symmetric (A=-Aᵀ)
Operations: A+B (same order), kA (scalar), AB (columns of A = rows of B)
Transpose: (AB)ᵀ = BᵀAᵀ | (A+B)ᵀ = Aᵀ+Bᵀ | (Aᵀ)ᵀ = A
Inverse: A⁻¹ = (1/|A|) × adj(A) | AA⁻¹ = I
Every square matrix: A = ½(A+Aᵀ) + ½(A-Aᵀ) [Symmetric + Skew-Symmetric]
Elementary Operations: Rᵢ ↔ Rⱼ, Rᵢ → kRᵢ, Rᵢ → Rᵢ + kRⱼ
Ch.4: Determinants ⭐
📐 Key Formulas:
2×2: |A| = ad - bc for [a,b; c,d]
3×3: Expand along R1 = a₁₁(M₁₁) - a₁₂(M₁₂) + a₁₃(M₁₃)
Properties: |Aᵀ| = |A| | Rows/Columns swap → sign change | Two identical rows → |A|=0 | Row × k → |A|×k | |kA| = kⁿ|A| (n = matrix का order, i.e. 3×3 तो n=3)
Area of Triangle: ½|x₁(y₂-y₃) + x₂(y₃-y₁) + x₃(y₁-y₂)|
Cramer's Rule: x = D₁/D, y = D₂/D, z = D₃/D
Adjoint: adj(A) = transpose of cofactor matrix
A(adj A) = |A|·I | |adj A| = |A|ⁿ⁻¹
Matrices Determinants Properties Inverse Adjoint Cramer Rule Class 12 Maths Board Exam 2026

📷 Determinant Properties + Cramer's Rule = 10 marks guaranteed!

📈 Unit 3: CALCULUS — 35 marks (HIGHEST!)

Ch.5: Continuity & Differentiability
📐 Differentiation Formulas:
• d/dx(xⁿ) = nxⁿ⁻¹ | d/dx(eˣ) = eˣ | d/dx(aˣ) = aˣ·ln a | d/dx(ln x) = 1/x
• d/dx(sin x) = cos x | d/dx(cos x) = -sin x | d/dx(tan x) = sec²x
• d/dx(sec x) = sec x·tan x | d/dx(cosec x) = -cosec x·cot x | d/dx(cot x) = -cosec²x
• d/dx(sin⁻¹x) = 1/√(1-x²) | d/dx(cos⁻¹x) = -1/√(1-x²) | d/dx(tan⁻¹x) = 1/(1+x²)
Chain Rule: d/dx[f(g(x))] = f'(g(x))·g'(x)
Product Rule: (uv)' = u'v + uv' | Quotient: (u/v)' = (u'v - uv')/v²
Logarithmic: y = [f(x)]^g(x) → log y = g(x)·log f(x) → differentiate both sides
Parametric: dy/dx = (dy/dt)/(dx/dt)
Rolle's Theorem: f continuous on [a,b], differentiable on (a,b), f(a)=f(b) ⇒ ∃c: f'(c)=0
LMVT: f'(c) = (f(b)-f(a))/(b-a)
Ch.6: Application of Derivatives ⭐
📐 Key Applications:
Rate of Change: dy/dt = (dy/dx)·(dx/dt)
Tangent at (x₁,y₁): y - y₁ = f'(x₁)(x - x₁) | Normal: y - y₁ = -(1/f'(x₁))(x - x₁)
Increasing: f'(x) > 0 | Decreasing: f'(x) < 0
Maxima/Minima (First Derivative Test): f'(x) changes + to - = maxima | - to + = minima
Second Derivative Test: f'(c)=0 and f''(c)<0 = maxima | f''(c)>0 = minima
Absolute Max/Min: Compare f(a), f(b), f(critical points)
⚡ Most Asked: Rate problems (ladders, spheres, cones), Optimization (maximize area/volume, minimize cost), Find intervals of increasing/decreasing
Ch.7: Integrals ⭐⭐ MOST IMPORTANT (15+ marks!)
📐 MEGA Integration Formula Sheet:
Basic:
• ∫xⁿ dx = xⁿ⁺¹/(n+1) + C | ∫1/x dx = ln|x| + C | ∫eˣ dx = eˣ + C | ∫aˣ dx = aˣ/ln a + C
Trigonometric:
• ∫sin x dx = -cos x | ∫cos x dx = sin x | ∫tan x dx = -ln|cos x| = ln|sec x|
• ∫cot x dx = ln|sin x| | ∫sec x dx = ln|sec x + tan x| | ∫cosec x dx = ln|cosec x - cot x|
• ∫sec²x dx = tan x | ∫cosec²x dx = -cot x | ∫sec x·tan x dx = sec x
Special Forms:
• ∫dx/(x²+a²) = (1/a)tan⁻¹(x/a) | ∫dx/√(a²-x²) = sin⁻¹(x/a)
• ∫dx/(x²-a²) = (1/2a)ln|(x-a)/(x+a)| | ∫dx/(a²-x²) = (1/2a)ln|(a+x)/(a-x)|
• ∫dx/√(x²+a²) = ln|x+√(x²+a²)| | ∫dx/√(x²-a²) = ln|x+√(x²-a²)|
• ∫√(a²-x²) dx = (x/2)√(a²-x²) + (a²/2)sin⁻¹(x/a) + C
• ∫√(x²+a²) dx = (x/2)√(x²+a²) + (a²/2)ln|x+√(x²+a²)| + C
⚠️ CRITICAL: हर indefinite integral में + C लिखना ज़रूरी है! CBSE ½ mark काटता है अगर + C missing हो। Definite integral (∫ₐᵇ) में C नहीं लगता।
📐 Methods:
By Parts: ∫u·v dx = u∫v dx - ∫(u'·∫v dx)dx — ILATE rule (Inverse, Log, Algebraic, Trig, Exponential)
Partial Fractions: (px+q)/((x-a)(x-b)) = A/(x-a) + B/(x-b)
Special: ∫eˣ[f(x)+f'(x)] dx = eˣ·f(x) + C
Definite: ∫ₐᵇ f(x)dx = F(b) - F(a)
Properties: ∫ₐᵇ = -∫ᵇₐ | ∫ₐᵇ f(x)dx = ∫ₐᵇ f(a+b-x)dx | ∫₀ᵃ f(x)dx = ∫₀ᵃ f(a-x)dx
Integration Formulas By Parts ILATE Partial Fractions Definite Properties Class 12 Maths CBSE 2026

📷 Integration Formulas = 15+ marks! ये sheet रोज़ पढ़ो!

Ch.8: Application of Integrals ⭐
📐 Area Under Curves:
Area = ∫ₐᵇ f(x) dx (between curve and x-axis)
Between two curves: ∫ₐᵇ [f(x) - g(x)] dx where f(x) ≥ g(x)
Circle: x² + y² = r² → y = √(r²-x²) → Area = πr²
Ellipse: x²/a² + y²/b² = 1 → Area = πab
Parabola: y² = 4ax → Area between 0 to a = (4a)(2a)/3 × 2
⚡ Most Asked: Area of circle, ellipse, parabola, area between line & parabola, area between two curves। Always draw the graph first!
Ch.9: Differential Equations
📐 Types & Methods:
Order: highest derivative | Degree: power of highest order derivative
Variable Separable: f(x)dx = g(y)dy → integrate both sides
Homogeneous: Put y = vx → dy/dx = v + x(dv/dx) → separate v and x
Linear DE: dy/dx + P(x)·y = Q(x) → IF = e^∫P dx → y × IF = ∫Q × IF dx + C
Linear DE (dx/dy): dx/dy + P(y)·x = Q(y) → similar method
⚡ Trick: See the form: separable? → separate | y/x type? → homogeneous | dy/dx + Py = Q? → linear | None? → substitute

📐 Unit 4: Vectors & 3D Geometry — 14 marks

Ch.10: Vector Algebra ⭐
📐 Key Formulas:
Magnitude: |a⃗| = √(a₁² + a₂² + a₃²)
Unit Vector: â = a⃗/|a⃗|
Dot Product: a⃗·b⃗ = a₁b₁ + a₂b₂ + a₃b₃ = |a⃗||b⃗|cos θ
Cross Product: a⃗ × b⃗ = |i⃗ j⃗ k⃗; a₁ a₂ a₃; b₁ b₂ b₃| | |a⃗ × b⃗| = |a⃗||b⃗|sin θ
Area of ∆: ½|a⃗ × b⃗| | Area of ∥gram: |a⃗ × b⃗|
Projection: proj of a⃗ on b⃗ = (a⃗·b⃗)/|b⃗|
Scalar Triple Product: [a⃗ b⃗ c⃗] = a⃗·(b⃗ × c⃗) = Volume of parallelepiped
Coplanar vectors: [a⃗ b⃗ c⃗] = 0
Ch.11: Three Dimensional Geometry ⭐⭐
📐 Key Formulas:
Direction Cosines: l² + m² + n² = 1 | l = a/√(a²+b²+c²)

Equation of Line:
• Vector: r⃗ = a⃗ + λb⃗ | Cartesian: (x-x₁)/a = (y-y₁)/b = (z-z₁)/c

Angle between Lines: cos θ = |a₁a₂+b₁b₂+c₁c₂| / (√(a₁²+b₁²+c₁²)·√(a₂²+b₂²+c₂²))
• Parallel: a₁/a₂ = b₁/b₂ = c₁/c₂ | Perpendicular: a₁a₂+b₁b₂+c₁c₂ = 0

Shortest Distance between Skew Lines:
• d = |(a⃗₂-a⃗₁)·(b⃗₁×b⃗₂)| / |b⃗₁×b⃗₂|
Parallel Lines (b⃗₁×b⃗₂ = 0): d = |(a⃗₂-a⃗₁) × b⃗| / |b⃗|
⚠️ पहले check करो: lines skew हैं या parallel? b⃗₁×b⃗₂ = 0 → parallel formula use करो!

Equation of Plane:
• General: ax + by + cz = d | Vector: r⃗·n⃗ = d
• Through 3 points: determinant form
Distance of point from plane: d = |ax₁+by₁+cz₁-d| / √(a²+b²+c²)
Angle between planes: cos θ = |a₁a₂+b₁b₂+c₁c₂| / (√·√)
Angle between line & plane: sin θ = |(a⃗·n⃗)| / (|a⃗|·|n⃗|)

📊 Linear Programming — 5 marks (EASIEST!) + 🎲 Probability — 8 marks

Ch.12: Linear Programming ⭐ FREE 5 marks!
📐 Steps:
1. Define variables (Let x = ..., y = ...)
2. Write objective function: Maximize/Minimize Z = ax + by
3. Write constraints as inequalities (≤ or ≥)
4. Plot constraints on graph → shade feasible region
5. Find corner points of feasible region
6. Evaluate Z at each corner → highest = max, lowest = min
⚡ Tip: Graph साफ़ बनाओ, corner points label करो, table में Z calculate करो = 5/5 marks guaranteed!
Ch.13: Probability ⭐
📐 Key Formulas:
Conditional: P(A|B) = P(A∩B)/P(B)
Multiplication: P(A∩B) = P(A)·P(B|A) = P(B)·P(A|B)
Independent: P(A∩B) = P(A)·P(B)
Bayes' Theorem: P(Eᵢ|A) = P(Eᵢ)·P(A|Eᵢ) / Σ P(Eⱼ)·P(A|Eⱼ) ⭐
Total Probability: P(A) = Σ P(Eᵢ)·P(A|Eᵢ)

Random Variable & Distribution:
• Mean (E(X)) = Σ xᵢ·P(xᵢ) | Variance = E(X²) - [E(X)]²
Binomial: P(X=r) = ⁿCᵣ · pʳ · qⁿ⁻ʳ where q = 1-p
• Mean = np | Variance = npq
⚡ Most Asked: Bayes' theorem (defective items, medical tests, box problems), Binomial distribution (coin/die tossing)

📅 10-Day Crash Plan — CBSE 28 Feb

📅 Day 1-2 (18-19 Feb) — Relations + Algebra = 18 marks
Day 1: Ch.1 Relations (types, equivalence) + Ch.2 Inverse Trig (properties, domain-range table)।
Day 2: Ch.3 Matrices (operations, inverse) + Ch.4 Determinants (properties, Cramer's rule, adjoint)।
📅 Day 3-5 (20-22 Feb) — CALCULUS = 35 marks ⭐
Day 3: Ch.5 Continuity & Differentiability — all formulas learn, 10 problems practice (chain rule, logarithmic, parametric)।
Day 4: Ch.7 Integration — formula sheet रटो, 15 integrals solve करो (by parts, partial fractions, special forms)। ⭐ सबसे important day!
Day 5: Ch.6 Application of Derivatives (maxima/minima, rate) + Ch.8 Application of Integrals (area) + Ch.9 Differential Equations (variable separable, linear)।
📅 Day 6-7 (23-24 Feb) — Vectors + 3D = 14 marks
Day 6: Ch.10 Vectors — dot/cross product, area, projection, scalar triple product।
Day 7: Ch.11 Three Dimensional — equation of line/plane, shortest distance, angle between planes, distance of point from plane।
📅 Day 8 (25 Feb) — Probability + LP = 13 marks
Morning: Ch.13 Probability — Bayes' theorem 5 problems, Binomial distribution 3 problems।
Evening: Ch.12 Linear Programming — 3 graph problems solve करो। Free 5 marks!
📅 Day 9-10 (26-27 Feb) — Paper Practice + Revision
Day 9: Full sample paper solve in 3 hours। Weak areas identify करो।
🎯 Important Questions →
Day 10 (27 Feb — EXAM कल!): Integration formulas + Vectors formulas + 3D formulas revise। 5 integrals + 2 Bayes' theorem solve।
10 PM: 😴 सो जाओ! Calculator NOT allowed — mental math practice।

🎯 Exam Day Strategy — 28 Feb 2026

📋 Attempt Order: MCQs (20 min) → LP graph (10 min) → Probability (15 min) → Vectors (15 min) → Determinants (10 min) → Integration (30 min) → 3D Geometry (15 min) → Application (20 min) → Review (15 min)
✍️ Show All Steps: Formula → Substitution → Calculation → Answer with units
📊 LP: Graph = 2 marks, Table = 1 mark, Answer = 2 marks
📐 Integration: Write method name (By parts/Partial fractions) → step-by-step
🎲 Probability: Draw tree diagram for Bayes' — partial marks for setup
⚠️ Calculator NOT allowed! Practice mental calculations

❓ FAQ

Q: CBSE Maths कब है?
28 Feb 2026 (शनिवार)10 दिन!
Q: सबसे ज़्यादा marks?
Calculus = 35 marks! Integration alone = 15+ marks। Then Vectors+3D = 14।
Q: Easiest chapters?
LP (5 marks — graph), Probability (8 — Bayes'), Vectors (5 — formulas) = 18 easy marks।
Q: Integration कैसे तैयार करें?
Formula sheet रटो + daily 10 integrals solve करो। By parts (ILATE), Partial fractions, Special forms।
Q: 3D Geometry important formulas?
Shortest distance, Distance of point from plane, Angle between planes, Equation of line/plane। 4 formulas = 14 marks!
Q: 10 दिन plan?
Day 1-2: Relations+Algebra | Day 3-5: Calculus | Day 6-7: Vectors+3D | Day 8: Probability+LP | Day 9-10: Practice।
Q: Calculator allowed?
नहीं! Calculator NOT allowed। Mental calculation practice करो — multiplication tables, squares, cubes।
Q: Pass marks strategy?
LP (5) + Probability (8) + Vectors (5) + Determinants (5) + Relations (5) + Basic Integration (5) = 33+ marks।

📢 Maths CBSE 28 Feb — Share करो!

WhatsApp, Telegram पर भेजो ↓

📤 शेयर करें:

💼

सरकारी नौकरी की तैयारी करें!

SSC, Railway, Bank, UPSC के लिए

Visit Now →

💬 टिप्पणियाँ

No comments:

Post a Comment